자기 보상 언어 모델

이 논문은 자기 보상 언어 모델(Self-Rewarding Language Models)을 소개합니다. 여기서 대형 언어 모델은 외부 보상 모델에 의존하지 않고 자체 출력을 반복적으로 생성, 평가 및 최적화하여 자기 정렬 및 성능 향상의 새로운 패러다임을 확립합니다.

CartaNova

2025. 7. 7.

저자: Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, Jason Weston (Meta & NYU) arxiv.org+15arxiv.org+15arxiv.org+15

핵심 아이디어

전통적인 RLHF 또는 DPO에서와 같이 사전 훈련된 정적 보상 모델에 의존하는 대신, 이 접근 방식은 LLM이 자신의 출력을 평가하고 스스로 보상하는 반복 과정을 통해 LLM‑as‑a‑Judge가 가능하게 합니다. 이 모델은 효과적으로 행위자와 비평가가 되어 자기 평가 및 정렬의 주기를 통해 발전합니다.

워크플로우

  1. 초기화: 기존의 지시 사항 따르기 데이터 (IFT) 및 선택적으로 보상 기반 예제 (EFT)를 사용하여 파인 튜닝된 시드 모델로 시작합니다.

  2. 자기 지침 생성: 모델이 새로운 프롬프트와 답변을 생성한 다음, 자체 응답을 평가하여 선호 데이터 세트를 구축합니다.

  3. 선호 기반 훈련: 직접 선호 최적화 (DPO)를 사용하여, 모델은 이러한 자기 판단한 선호를 기준으로 재훈련됩니다. 반복 → 향상된 성능 및 보상 이해.

이 반복 주기는 모델이 출력 품질과 자체 보상 기능을 지속적으로 개선할 수 있게 해줍니다 researchgate.net+8arxiv.org+8arxiv.org+8reddit.com+2arxiv.org+2arxiv.org+2.

결과

  • 자기 보상을 통해 세 번의 반복으로 LLaMA 2 70B를 파인 튜닝한 결과 Claude 2, Gemini Pro 및 GPT‑4 (0613 버전)와 같은 최고 모델을 AlpacaEval 2.0 벤치마크에서 크게 초월하였습니다 reddit.com+4arxiv.org+4arxiv.org+4.

  • 모델이 정적 인간 레이블의 보상 신호가 부과하는 한계를 초월할 수 있음을 보여줍니다.

의의

  • 비싼 인간 주석에 대한 의존도를 줄이는 자기 개선 피드백 루프를 도입합니다.

  • 모델이 자신의 보상 메커니즘을 개선하면서 응답 품질을 높일 수 있도록 하여 초인적인 에이전트 성능을 향해 나아가는 새로운 경로를 제공합니다.

More Insights

[

ARTICLE

]

AWS를 활용한 데이터 거버넌스 아키텍처 구축

이 다이어그램은 강력한 데이터 거버넌스를 구축하기 위해 설계된 종단 간 아키텍처를 설명하고 있으며, 아마존 웹 서비스(AWS) 도구 모음을 사용합니다. 이 구조는 조직이 안전하고 확장 가능한 환경에서 데이터를 수집, 수집, 저장, 처리, 분석 및 시각화할 수 있도록 합니다. 전체 흐름은 데이터 수명 주기에서 각 주요 기능을 수행하는 여섯 가지 주요 단계로 나뉩니다.

[

ARTICLE

]

AWS를 활용한 데이터 거버넌스 아키텍처 구축

이 다이어그램은 강력한 데이터 거버넌스를 구축하기 위해 설계된 종단 간 아키텍처를 설명하고 있으며, 아마존 웹 서비스(AWS) 도구 모음을 사용합니다. 이 구조는 조직이 안전하고 확장 가능한 환경에서 데이터를 수집, 수집, 저장, 처리, 분석 및 시각화할 수 있도록 합니다. 전체 흐름은 데이터 수명 주기에서 각 주요 기능을 수행하는 여섯 가지 주요 단계로 나뉩니다.

[

ARTICLE

]

AWS를 활용한 데이터 거버넌스 아키텍처 구축

이 다이어그램은 강력한 데이터 거버넌스를 구축하기 위해 설계된 종단 간 아키텍처를 설명하고 있으며, 아마존 웹 서비스(AWS) 도구 모음을 사용합니다. 이 구조는 조직이 안전하고 확장 가능한 환경에서 데이터를 수집, 수집, 저장, 처리, 분석 및 시각화할 수 있도록 합니다. 전체 흐름은 데이터 수명 주기에서 각 주요 기능을 수행하는 여섯 가지 주요 단계로 나뉩니다.

[

PAPER

]

온톨로지 개발 101: 첫 번째 온톨로지 만들기를 위한 가이드

온톨로지 생성에 대한 실용적인 소개인 이 가이드는 도메인 범위 정의, 기존 어휘 재사용, 클래스 계층 구조, 속성 및 인스턴스 구축을 포함한 단계별 방법론을 설명하고, Protégé-2000 내에서의 의미적 관계 및 반복적 개선과 같은 복잡한 설계 문제를 다룹니다.

[

PAPER

]

온톨로지 개발 101: 첫 번째 온톨로지 만들기를 위한 가이드

온톨로지 생성에 대한 실용적인 소개인 이 가이드는 도메인 범위 정의, 기존 어휘 재사용, 클래스 계층 구조, 속성 및 인스턴스 구축을 포함한 단계별 방법론을 설명하고, Protégé-2000 내에서의 의미적 관계 및 반복적 개선과 같은 복잡한 설계 문제를 다룹니다.

[

PAPER

]

온톨로지 개발 101: 첫 번째 온톨로지 만들기를 위한 가이드

온톨로지 생성에 대한 실용적인 소개인 이 가이드는 도메인 범위 정의, 기존 어휘 재사용, 클래스 계층 구조, 속성 및 인스턴스 구축을 포함한 단계별 방법론을 설명하고, Protégé-2000 내에서의 의미적 관계 및 반복적 개선과 같은 복잡한 설계 문제를 다룹니다.

[

PAPER

]

최전선 AI 모델 수 동향: 2028년까지의 예측

2023년과 2028년 사이에 대규모 기초 모델의 극적인 성장을 예측하는 데이터 기반 예측으로, EU AI 법과 같은 새로운 AI 거버넌스 프레임워크 하에서 얼마나 많은 모델이 훈련 컴퓨팅 임계값을 초과할지를 평가합니다.

[

PAPER

]

최전선 AI 모델 수 동향: 2028년까지의 예측

2023년과 2028년 사이에 대규모 기초 모델의 극적인 성장을 예측하는 데이터 기반 예측으로, EU AI 법과 같은 새로운 AI 거버넌스 프레임워크 하에서 얼마나 많은 모델이 훈련 컴퓨팅 임계값을 초과할지를 평가합니다.

[

PAPER

]

최전선 AI 모델 수 동향: 2028년까지의 예측

2023년과 2028년 사이에 대규모 기초 모델의 극적인 성장을 예측하는 데이터 기반 예측으로, EU AI 법과 같은 새로운 AI 거버넌스 프레임워크 하에서 얼마나 많은 모델이 훈련 컴퓨팅 임계값을 초과할지를 평가합니다.

주식회사 카르타노바

Tokyo

도쿄도 미나토구 기타아오야마 2초메 14-4, 더 아가일 아오야마 5층 (107-0061)

Seoul

서울특별시 강남구 테헤란로79길 6, 4층 브이434(삼성동, 제이에스타워) (06158)

© 2025 CartaNova, Inc. All Rights Reserved.

주식회사 카르타노바

Tokyo

도쿄도 미나토구 기타아오야마 2초메 14-4, 더 아가일 아오야마 5층 (107-0061)

Seoul

서울특별시 강남구 테헤란로79길 6, 4층 브이434(삼성동, 제이에스타워) (06158)

© 2025 CartaNova, Inc. All Rights Reserved.

주식회사 카르타노바

Tokyo

도쿄도 미나토구 기타아오야마 2초메 14-4, 더 아가일 아오야마 5층 (107-0061)

Seoul

서울특별시 강남구 테헤란로79길 6, 4층 브이434(삼성동, 제이에스타워) (06158)

© 2025 CartaNova, Inc. All Rights Reserved.